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Abstract

In this article we present a non-oscillatory finite volume scheme of arbitrary accuracy in space and time for solving lin-
ear hyperbolic systems on unstructured grids in two and three space dimensions using the ADER approach. The key point
is a new reconstruction operator that makes use of techniques developed originally in the discontinuous Galerkin finite
element framework. First, we use a hierarchical orthogonal basis to perform reconstruction. Second, reconstruction is
not done in physical coordinates, but in a reference coordinate system which eliminates scaling effects and thus avoids
ill-conditioned reconstruction matrices. In order to achieve non-oscillatory properties, we propose a new WENO recon-
struction technique that does not reconstruct point-values but entire polynomials which can easily be evaluated and dif-
ferentiated at any point. We show that due to the special reconstruction the WENO oscillation indicator can be computed
in a mesh-independent manner by a simple quadratic functional. Our WENO scheme does not suffer from the problem of
negative weights as previously described in the literature, since the linear weights are not used to increase accuracy. Accu-
racy is obtained by merely putting a large linear weight on the central stencil. The resulting one-step ADER finite volume
scheme obtained in this way performs only one nonlinear WENO reconstruction per element and time step and thus can be
implemented very efficiently even for unstructured grids in three space dimensions. We show convergence results obtained
with the proposed method up to sixth order in space and time on unstructured triangular and tetrahedral grids in two and
three space dimensions, respectively.
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1. Introduction

The goal of our presented work is to construct a numerical method that can solve hyperbolic PDEs with, at
least theoretically, arbitrary high order of accuracy in space and time in complex two and three-dimensional
domains. Hence, the method should be able to run on unstructured meshes. Therefore, high order finite dif-
ference (FD) schemes are not an option due to their requirement of structured grids. Furthermore, the scheme
should be able to treat discontinuous solutions without producing spurious oscillations. Finite volume (FV)
methods have the advantage over finite difference schemes that they can be extended to high order of accuracy
even on unstructured grids using a reconstruction operator. Previous work documented in the literature con-
tains the use of linear reconstruction operators such as least-squares reconstruction [4,30], based on a single
stencil. These linear operators, however, generate spurious oscillations in the vicinity of discontinuities. There-
fore, nonlinear ENO reconstructions on unstructured grids have been introduced [1,37], as well as WENO
reconstructions [23,36,17,27]. However, all the previously cited reconstruction operators have only been used
in two space dimensions and the maximum achieved order documented in those publications was four. To our
knowledge, no results of three-dimensional ENO or WENO schemes on unstructured tetrahedral grids have
been published up to now.

In this article we first present a new linear polynomial reconstruction operator that uses hierarchical
orthogonal basis functions in a reference coordinate system to rule out scaling effects and to obtain a very gen-
eral formulation that facilitates implementation in two and three dimensions and can automatically achieve
any desired order of accuracy. The details are given in Section 2. To obtain a non-oscillatory scheme, a non-
linear WENO reconstruction operator is subsequently constructed, based on the linear reconstruction applied
to a set of stencils which are then weighted in a nonlinear, solution-dependent way. Due to the use of the spe-
cial basis functions, the construction and implementation of the resulting WENO scheme can be done very
easily even in three space dimensions, see Section 2.3. Once the reconstruction is available, an arbitrary high
order accurate finite volume scheme can be constructed using the ADER approach of Toro et al. In this article
we focus our considerations on the nonlinear reconstruction operator and fundamental numerics and there-
fore restrict the applications to linear hyperbolic systems.

In the ADER approach, the numerical flux function is based on the solution of generalized Riemann prob-
lems, where the initial data on both sides of the element interfaces are no longer piecewise constant as in the
original approach of Godunov [18], but where the initial data is piecewise polynomial, in general separated by
a jump at the interface. First ideas of this concept can be traced back to Ben-Artzi and Falcovitz [5], who
developed a second-order FV scheme based on the solution of generalized Riemann problems. The idea of
arbitrary high order generalized Riemann solvers was first developed by Toro et al. in a finite volume frame-
work for linear equations on Cartesian grids [42,35,34]. They called their approach ADER, as abbreviation for
‘‘Arbitrary high order schemes using derivatives’’. The extension to nonlinear hyperbolic conservation laws
with source terms has then been achieved by Titarev and Toro using a WENO reconstruction technique on
Cartesian grids [40,44,41,45]. With the work of Käser and Iske [27] the ADER finite volume approach was
for the first time applied on unstructured meshes. They considered nonlinear scalar hyperbolic conservation
laws and achieved fourth order of accuracy in space and time using a WENO reconstruction.

The fundamental ideas behind the generalized Riemann problem solvers are a temporal Taylor series expan-
sion of the state at the interface, where then time derivatives are replaced by space derivatives using repeatedly
the governing conservation law in differential form, which is the so-called Cauchy–Kovalewski or Lax–Wendr-
off procedure. However, the problem is that in general neither the state nor the derivatives are defined on the
element interfaces where jumps are admitted. The idea is now to solve conventional homogeneous Riemann
problems for the state and all space derivatives. This strategy defines the values of the state and the space deriv-
atives on the element interfaces which can then be plugged into the Cauchy–Kovalewski procedure. In the linear
case, special simplifications can be applied to increase efficiency. The construction of the scheme, called ADER-
FV scheme in this article, is presented in detail in Section 3. It has uniform accuracy in space and time and is
stable up to a Courant number of one in one space dimension [16]. Numerical convergence studies are per-
formed up to seventh order of accuracy in space and time on an irregular triangular grid in two dimensions
and up to sixth order on a regular tetrahedral grid in three dimensions, see Section 4. The non-oscillatory prop-
erties are finally studied on irregular unstructured two and three-dimensional grids in Section 5.
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2. A new reconstruction technique

2.1. Reconstruction basis functions and transformation to the reference coordinate system

The main ingredient of the proposed arbitrary high order finite volume scheme is a new reconstruction
algorithm that makes use of techniques developed originally in the discontinuous Galerkin (DG) framework.
The computational domain X is discretized by conforming elements T(m), indexed by a unique mono-index m

ranging from 1 to the total number of elements E. The elements are chosen to be triangles in 2D and tetra-
hedrons in 3D. The union of all elements is called the triangulation or tetrahedrization of the domain,
respectively,
Fig. 1.
(0,1) a
TX ¼
[E
m¼1

T ðmÞ: ð1Þ
As usual for finite volume schemes, data is represented by the cell averages of a conserved quantity u inside an
element T(m),
�uðmÞ ¼ 1

jT ðmÞj

Z
T ðmÞ

udV ; ð2Þ
where jT(m)j denotes the volume of the element. In order to achieve high order of accuracy for the spatial dis-
cretization, we need to reconstruct higher order polynomials w from the given cell averages. We write the
reconstruction polynomial for element T(m) as
wðmÞðn; g; fÞ ¼ ŵðmÞl Wlðn; g; fÞ; ð3Þ

where n, g and f are the coordinates in a reference coordinate system, see Fig. 1, where also the reference ele-
ments TE are defined. Throughout the whole paper we use classical tensor notation, which implies summation
over each index appearing twice. Whereas the reconstructed degrees of freedom ŵðmÞl are not space-dependent,
the reconstruction basis functions Wl are polynomials of degree M and depend on space. The index l ranges
from 0 to its maximum value L � 1, where L ¼ 1

2
ðM þ 1ÞðM þ 2Þ and L ¼ 1

6
ðM þ 1ÞðM þ 2ÞðM þ 3Þ are the

numbers of reconstructed degrees of freedom in 2D and 3D, respectively, depending on the order of the recon-
struction. We use the hierarchical orthogonal reconstruction basis functions that are given e.g. in [8,10] for
triangles in 2D and tetrahedrons in 3D. The transformation from the physical coordinate system x–y–z into
the reference coordinate system n–g–f is in three space dimensions defined by
x ¼ X ðmÞ1 þ ðX
ðmÞ
2 � X ðmÞ1 Þnþ ðX

ðmÞ
3 � X ðmÞ1 Þgþ ðX

ðmÞ
4 � X ðmÞ1 Þf;

y ¼ Y ðmÞ1 þ ðY
ðmÞ
2 � Y ðmÞ1 Þnþ ðY

ðmÞ
3 � Y ðmÞ1 Þgþ ðY

ðmÞ
4 � Y ðmÞ1 Þf;

z ¼ ZðmÞ1 þ ðZ
ðmÞ
2 � ZðmÞ1 Þnþ ðZ

ðmÞ
3 � ZðmÞ1 Þgþ ðZ

ðmÞ
4 � ZðmÞ1 Þf;

ð4Þ
where X ðmÞi , Y ðmÞi and ZðmÞi denote the physical vertex coordinates of the considered element T(m). In two space
dimensions, the same transformation applies for x and y, setting f = 0. As short notation for the mapping and
its inverse mapping from~n ¼ ðn; g; fÞ to~x ¼ ðx; y; zÞ and vice versa with respect to the element T(m), we simply
write
~x ¼~xðT ðmÞ;~nÞ; ~n ¼~nðT ðmÞ;~xÞ: ð5Þ
Transformation from the physical triangle and tetrahedron T(m) to the canonical reference triangle TE with nodes (0,0), (1,0) and
nd the canonical reference tetrahedron TE with nodes (0,0,0), (1,0,0), (0,1,0), (0,0,1).
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Via the inverse mapping given in (5) for the vector~n, the element T(m) is transformed to the unit element TE,
whose volume is jT Ej ¼ 1

2
in two dimensions and jT Ej ¼ 1

6
in three space dimensions, respectively. Furthermore,
y
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sector
J ij ¼
oxi

onj
ð6Þ
is the Jacobian matrix of the transformation and jJj = jJijj its determinant, being equal to twice the triangle
surface in 2D and equal to six times the tetrahedron volume in 3D.

For performing the reconstruction on element T(m), we now choose a reconstruction stencil
SðmÞ ¼
[ne

k¼1

T ðjðkÞÞ ð7Þ
that contains a total number of ne elements. Here 1 6 k 6 ne is a local index, counting the elements in the sten-
cil, and j = j(k) is the mapping from the local index k to the global indexation of the elements in TX. We set by
definition j(1) = m and thus the first element in the stencil (k = 1) is always the considered element T(m) for
which reconstruction is to be done. For ease of notation, we write in the following only j, meaning j = j(k).

We then apply the inverse mapping (5) with respect to element T(m) to all the elements T ðjÞ 2SðmÞ, where the
transformed elements are in the following denoted as ~T ðjÞ. We emphasize that for all elements T ðjÞ 2 SðmÞ the map-
ping with respect to the first element in the stencil is applied, so m is constant for each stencil and therefore the
applied mapping formula is the same for all elements in SðmÞ. We note in particular that the transformed element
of the first element in the stencil is of course the canonical reference element, hence eT jð1Þ ¼ eT ðmÞ ¼ T E. The stencil
transformed in that way is denoted ~SðmÞ ¼

S eT ðjÞ, see a two- and three-dimensional example in Figs. 2 and 3.
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. Examples of original stencils SðmÞ (top row) and transformed stencils ~SðmÞ (bottom row) in 2D for third order polynomial
truction with ne = 20. (a), (d): central WENO stencils. (b), (e): three primary WENO sector stencils. (c), (f): three reverse WENO
stencils.
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Fig. 3. Examples of original stencils SðmÞ (top row) and transformed stencils ~SðmÞ (bottom row) in 3D for second-order polynomial
reconstruction with ne = 20. (a), (d): central WENO stencils. (b), (e): four primary WENO sector stencils. (c), (f): four reverse WENO
sector stencils.
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The reconstruction must be conservative, at least in the element considered for reconstruction. Initially, we
even require integral conservation for w(m) in all elements T ðjÞ 2 SðmÞ. In the physical coordinate system we
thus have
Z

T ðjÞ
wðmÞð~nðT ðmÞ;~xÞÞdV ¼ jT ðjÞj�uðjÞ; 8T ðjÞ 2 SðmÞ: ð8Þ
After transforming all elements of the stencil using (5) and taking into account that the degrees of freedom
ŵðmÞl do not depend on space, we obtain the intermediate result
jJ j
Z
eT ðjÞ Wlð~nÞdndgdf

� �
ŵðmÞl ¼ jJ jjeT ðjÞj�uðjÞ; 8eT ðjÞ 2 ~SðmÞ: ð9Þ
The Jacobian determinant appears on both sides of Eq. (9) and thus cancels out. Please note that in the
general case this is only possible for triangles and tetrahedrons with straight edges, to which we restrict our-
selves in this paper. General polyhedral elements or even curved boundaries are not considered here.

The canceling of the Jacobian determinants automatically cancels scaling effects of the problem and avoids
ill-conditioned reconstruction matrices as reported by Abgrall in [1]. Friedrich [17] used barycentric coordi-
nates in order to avoid this problem, whereas we use a hierarchical orthogonal basis as commonly used in
the discontinuous Galerkin finite element framework. During the reconstruction step, the basis polynomials
are continuously extended over the whole stencil. In more detail, this extension means that during reconstruc-
tion the polynomial term given by Wlð~nÞ is not only valid inside the reference element TE, but also in all the
other elements in the transformed stencil ~SðmÞ. After the reconstructed polynomial for element T(m) has been
obtained, the basis polynomials are again restricted to the considered element T(m). We emphasize that the
integration on the left hand side has to be done over the transformed elements eT ðjÞ. In order to do this inte-
gration, the trick now consists in doing another coordinate transformation to a second reference coordinate



698 M. Dumbser, M. Käser / Journal of Computational Physics 221 (2007) 693–723
system using the vertices of the transformed element eT ðjÞ as parameter of another mapping from the first n–g–f
reference system to the second ~n� ~g� ~f reference coordinate system. For convenience, we denote ~N ¼ ð~n; ~g;~fÞ.
The mapping and its inverse are then denoted as
~n ¼~nðeT ðjÞ; ~NÞ; ~N ¼ ~NðeT ðjÞ;~nÞ; ð10Þ

and the Jacobian determinant of this mapping is called j~J j. Thus, Eq. (9) becomes after the second
transformation
jJ jj~J j
Z

T E

Wlð~nðeT ðjÞ; ~NÞÞd~nd~gd~f

� �
ŵðmÞl ¼ jJ jj~J jjT Ej�uðjÞ; 8eT ðjÞ 2 ~SðmÞ; ð11Þ
where again all Jacobian determinants cancel out! The final set of reconstruction equations is
Z
T E

Wlð~nðeT ðjÞ;~NÞÞd~nd~gd~f

� �
ŵðmÞl ¼ jT Ej�uðjÞ; 8eT ðjÞ 2 ~SðmÞ: ð12Þ
In order to compute the integral on the left hand side of (12), we use classical multidimensional Gaussian
quadrature of appropriate order. For an exhaustive overview of such multidimensional quadrature formulae
see [38].

2.2. Solution of the reconstruction equations

The definition of the reconstruction equations (12) has been given in the previous section and for conve-
nience, we introduce the simplified tensor notation
Aklŵl ¼ �uk; ð13Þ

with
Akl ¼
1

jT Ej

Z
T E

Wlð~nðeT ðjðkÞÞ; ~NÞÞd~nd~gd~f

� �
and �uk ¼ �uðjðkÞÞ: ð14Þ
The number of reconstructed degrees of freedom is L and therefore we need at least ne = L elements in the
stencil. Unfortunately, if we choose ne = L so that the matrix Akl becomes square, the resulting scheme may
become unstable on general meshes. Therefore, we are forced to use more elements than the necessary mini-
mum. The use of enlarged reconstruction stencils for robustness purposes has already been reported previ-
ously in the literature, see e.g. [4,30,27].

Furthermore, due to geometrical issues, the reconstruction matrix may be not invertible. This may happen
for example when all elements are aligned on a straight line. Therefore, the stencil construction algorithm
should avoid such cases. In our particular implementation, we compute the singular values of the matrix
Akl and check if some of them are zero. If so, we continue adding elements until none of the singular values
is zero.

In order to fix parameters once and for all, since we are interested in a very general algorithm, we usually
choose ne = 1.5L in 2D and ne = 2L in 3D. This means that we take between 50% and 100% more elements
than the minimum necessary for reconstruction. This large number of elements may seem to be exaggerated in
some cases. However, we will see later in our numerical experiments that our reconstruction is first neverthe-
less computationally quite cheap and second also very robust. Therefore we can admit this generous choice for
the stencil size. We note in particular that with this choice, we did not encounter any singular reconstruction
matrix in all computations presented in this article.

Since (13) becomes overdetermined with our choice ne > L we use a constrained least-squares technique in
order to solve (13) respecting conservation in the first element T(m) of the stencil. Due to the special choice of
the reconstruction basis functions, the equality constraint becomes simply ŵ0 ¼ �ujð1Þ ¼ �uðmÞ, which is written in
tensor notation
Clŵl ¼ Ri�ui: ð15Þ
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The vectors Cl and Ri contain only zeros except of the entries C0 = 1 and R1 = 1. The least-squares solution of
(13) with the constraint (15) is obtained by seeking the minimum of the functional
f ¼ ðAklŵl � �ukÞ � ðAkjŵj � �ukÞ � k � ðClŵl � Ri�uiÞ ð16Þ

with respect to ŵl and the Lagrange multiplicator k used for coupling the constraint. Differentiation yields
of
oŵl
¼ 2AklAkjŵj � 2Akl�uk � kCl ¼ 0;

of
ok
¼ Clŵl � Ri�ui ¼ 0: ð17Þ
and the final equation system to solve for the vector of unknown reconstructed degrees of freedom ŵl and the
Lagrange multiplier k becomes
2AklAkj �Cl

Cldlj 0

� �
�

ŵj

k

� �
¼

2Akl�uk

Ri�ui

� �
: ð18Þ
Here, dlj is the Kronecker symbol. The matrix on the left hand side of (18) will be called reconstruction matrix
in the following and in order to increase the speed of the algorithm, it is inverted and stored for each element
of TX so that the unknown vector of the reconstructed degrees of freedom ŵl can be easily calculated by a
simple matrix–vector multiplication of the inverse reconstruction matrix and the vector of known cell averages
�uk of the stencil SðmÞ. We note that most of the memory requirements of our proposed scheme are due to the
storage of the inverse reconstruction matrix.

2.3. A new unstructured WENO scheme of arbitrary accuracy with non-negative weights

There has been a long quest documented in the research literature to circumvent Godunov’s theorem, which
states that any linear scheme of order higher than one is oscillatory. The basic idea to get high order and at the
same time non-oscillatory properties is to introduce a nonlinearity in the scheme, where the reconstruction
depends on the numerical solution itself. Reconstructions producing ‘‘smoother’’ solutions are preferred by
the nonlinearity. The most frequently used schemes are TVD schemes for second order of accuracy, see
e.g. [46,47,19,39,29], and weighted essentially non-oscillatory (WENO) schemes for accuracy higher than
two. WENO schemes [25,23,3,17,27] are usually preferred with respect to the original essentially non-oscilla-
tory (ENO) schemes [20,7] since they are more accurate, more robust, and can be implemented more effi-
ciently. However, there are two considerable drawbacks, which probably prevented their implementation
and application on three-dimensional unstructured meshes. On the one hand side they may become compu-
tationally quite expensive on unstructured meshes in 3D, and on the other hand side there may arise the prob-
lem of negative weights [36,23], depending on the grid geometry.

On unstructured 3D meshes, the optimal WENO schemes may get computationally very expensive because
they reconstruct point-values in each Gaussian quadrature point that is needed in the finite volume context to
evaluate the inter-cell fluxes and to compute source terms, if present. For each Gaussian point, the whole non-
linear reconstruction must be done again, and when Runge–Kutta time-integration is performed, it has to be
done in all the Runge–Kutta substages. The classical WENO technique reconstructing point-values using an
appropriately weighted nonlinear combination of lower order polynomials may be very efficient in one space
dimension and generally on structured grids, where reconstruction can still be split into a set of purely one-
dimensional sub-problems, but on unstructured multidimensional meshes the computational effort grows tre-
mendously, especially if volume integrals of source terms have to be evaluated. Therefore, we propose a modified
WENO scheme that in general follows closely the previous work done on WENO methods by Jiang and Shu
[25], Shi, Hu and Shu [36,23] and Balsara and Shu [3], except of the fact that we do not reconstruct point-values,
but entire polynomials. As we will see later, this approach simultaneously removes the problem of negative
weights and reduces considerably the computational effort, especially because of our special reconstruction tech-
nique presented in the previous sections. A similar concept has already been used by Friedrich [17] and Käser
and Iske [27], however their implementation was restricted to two space dimensions and did not go beyond
fourth order of accuracy in space and time. Furthermore, they weighted all stencils equally. In contrast to this
choice, we weight the central stencil with a large linear weight compared to the one-sided stencils since in smooth
regions the central stencil usually provides the most stable reconstruction together with the highest quality.
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Following the previous work on WENO schemes, instead of choosing only one stencil for reconstruction,
we now have to do reconstruction on a whole family of stencils SðmÞ

i , where 1 6 i 6 ns is the local number of
the stencil and ns is the total number of stencils used for the WENO reconstruction. The set of reconstruction
stencils used in order to perform reconstruction for element T(m) is chosen as follows:

� One central stencil, which is obtained by recursively adding successively the Neumann neighbors (i.e. the
direct side neighbors) of the element T(m) and all Neumann neighbors of the elements added to the stencil
so far, until the desired number of stencil elements ne is reached. For an example of central stencils see
Fig. 2(a) and (d) in two dimensions and Fig. 3(a) and (d) in three dimensions.
� Three primary sector stencils in 2D, see Fig. 2(b) and (e), and four primary sector stencils in 3D, see

Fig. 3(b) and (e). The sectorial search is very easily implemented in the n–g–f reference coordinate system.
Each primary sector is spanned by one vertex of the reference element TE and the vectors connecting the
vertex with the face opposite to this vertex. Transformed elements eT ðjÞ within such a sector are then added
successively as for the central stencil.
� For special locations of the discontinuities, the primary sector stencils may not be sufficient to find smooth

stencils. Therefore, Käser and Iske [27] proposed to use also so-called reverse sectors, in order to have a
greater choice of one-sided reconstructions. The center of each reverse sector is defined by one vertex of
the reference element TE plus the average of the vectors spanning the corresponding primary sector. The
vectors spanning the reverse sector are simply the negative vectors spanning the corresponding primary sec-
tor. For examples, see Fig. 2(c) and (f) in 2D and Fig. 3(c) and (f) in 3D.

Therefore, we usually have a total set of ns = 7 stencils in 2D and ns = 9 stencils in 3D. ns may be decreased
in the presence of the boundary of X or if it is not possible to find full sets of primary and reverse sector sten-
cils due to geometrical issues. We define the convention that the first stencil is always the central one. All sten-
cils S

ðmÞ
i are first transformed to the n–g–f reference system, then the reconstruction according to Eq. (12) is

done for each of the transformed stencils ~S
ðmÞ
i . For each stencil in the set of stencils we obtain a vector of

reconstructed degrees of freedom ŵi
l solving (18).

Please note that the implementation of periodic boundary conditions becomes particularly easy due to the
transformation to the reference coordinate system. For an element T(m) whose stencils are spread across a peri-
odic boundary, it is sufficient to enforce continuity of the transformed stencils ~S

ðmÞ
i in the reference system by

mere translation of the mapped elements.
The final nonlinear WENO reconstruction polynomial wðmÞWENO of degree M is now defined by a nonlinear

combination of the polynomials wðmÞi of degree M, reconstructed on ns stencils:
wðmÞWENOðn; g; fÞ ¼
Xns

i¼1

xiw
ðmÞ
i ðn; g; fÞ ¼

Xns

i¼1

xiŵi
l

 !
Wlðn; g; fÞ: ð19Þ
According to [25,3,23,27] we define the normalized nonlinear weights xi as
xi ¼
~xiPns

r¼1 ~xr
; ð20Þ
where the non-normalized nonlinear weights ~xi are functions of the linear weights ki and the so-called oscil-
lation indicators ri as follows:
~xi ¼
ki

ð�þ riÞr
: ð21Þ
According to the literature [27], we typically choose � = 10�5 and r = 4. Up to now, no changes concerning
the nonlinear weights used in the usual point-wise WENO reconstruction have been introduced. However, our
choice of the linear weights ki and the oscillation indicator will be different. First, the linear weights are simply
defined by
ki ¼
k1

1

�
if i ¼ 1;

else:
ð22Þ
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Since for smooth solutions the central stencil is usually the best one, we put a large linear weight k1� 1 on
the central stencil, which was by definition the first stencil in the whole set of stencils. The one-sided recon-
struction stencils get the lower weight one. We usually take k1 = 103. However, as shown previously in the
literature on WENO schemes for the parameters � and r, our sensitivity studies carried out in Section 5.1 show
that the results are not very sensitive to the choice of k1 in the range from 102 to 105. Lower values yield better
results on discontinuities, larger values are usually better for smooth solutions.

Due to our reconstruction in the reference coordinate system, the oscillation indicators ri of each stencil can
be computed in a mesh-independent manner as a quadratic functional of the reconstructed degrees of freedom
ŵi

l. Due to the reference system, scaling is already taken out of the problem, therefore we do not need to con-
sider the element’s volume in the formula for the oscillation indicator as usually documented in the literature,
see [27,23]. We compute ri as
ri ¼
XM

r¼1

Xr

a¼0

Xr�a

b¼0

Z
T E

o
r

ona
ogbofc wðmÞi ðn; g; fÞ

� �2

dndgdf; ð23Þ
with c = r � a � b. Due to the definition (3) of the reconstructed polynomials in terms of reconstruction basis
functions Wl, we obtain the simple quadratic functional
ri ¼ ŵi
lRlmŵi

m; ð24Þ

with the universal oscillation indicator matrix Rlm,
Rlm ¼
XM

r¼1

Xr

a¼0

Xr�a

b¼0

Z
T E

or

ona ogb ofc Wlðn; g; fÞ �
or

ona ogb ofc Wmðn; g; fÞdndgdf; ð25Þ
which does neither depend on the mesh, nor on the problem. It just depends on the reconstruction basis func-
tions and can be easily precomputed once, e.g. using modern computer algebra systems, and then stored.
Please note that in (24) tensor summation only has to be done for indices l and m, whereas i is the index
for the corresponding stencil.

3. Efficient formulation of the unstructured ADER finite volume scheme in two and three dimensions for linear

hyperbolic systems

In this section we apply the reconstruction operator described in detail in Section 2 to construct an arbi-
trarily accurate finite volume scheme on two- and three-dimensional unstructured meshes using the ADER
approach of Toro et al. [42,40,41,35,34]. For simplicity reasons, we restrict the application to general linear
hyperbolic systems
oup

ot
þ Apq

ouq

ox
þ Bpq

ouq

oy
þ Cpq

ouq

oz
¼ 0; ð26Þ
in two and three space dimensions, where the two-dimensional case is obtained by simply setting o
oz ¼ 0 and

Cpq = 0. Again, we use classical tensor notation, which implies summation over each index appearing twice.
The indices p and q range from 1 to the number of equations Q of the system. The resulting scheme will be a
significant generalization of the approach presented in [34] for Cartesian meshes.

3.1. Semi-discrete form of the scheme

The computational domain is divided in conforming elements (triangles or tetrahedrons) T(m) being
addressed by a unique index (m). The numerical solution uh of (26) is approximated inside each element
T(m) by the cell average of the state vector �up. The approximation space is denoted by Vh, which for finite vol-
ume schemes is the space of piecewise constant functions. The reconstruction space is the space of piecewise
polynomials up to degree M and is denoted Wh. The reconstructed numerical solution wh 2Wh is given ele-
mentwise by (3), either obtained by using a linear reconstruction based on the central stencil only, or by using
the WENO reconstruction procedure described in Section 2.3. For systems, we apply the WENO procedure
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component-wise in this article. We note that a reconstruction of degree M leads to a scheme with accuracy
M + 1. Eq. (26) is now integrated over an element T(m)
Z

T ðmÞ

oup

ot
dV þ

Z
T ðmÞ

Apq
ouq

ox
þ Bpq

ouq

oy
þ Cpq

ouq

oz

� �
dV ¼ 0: ð27Þ
Integration by parts yields
Z
T ðmÞ

oup

ot
dV þ

Z
oT ðmÞ

F h
pðw�q ;wþq Þ~ndS ¼ 0; ð28Þ
where a numerical flux F h
pðw�q ;wþq Þ~n depending on the reconstructed numerical solutions w�q on the right and

the left of the interface has been introduced in the surface integral since wq is usually discontinuous at the ele-
ment boundaries. The flux can be written very easily in a coordinate system which is aligned with the outward
pointing unit normal vector~n ¼ ðnx; ny ; nzÞT on the boundary. The Jacobian matrix in normal direction AN

pq is
defined as
AN
pq ¼ Apqnx þ Bpqny þ Cpqnz; ð29Þ
with its right and left eigenvector matrices RN
pq and LN

pq ¼ ðRN
pqÞ
�1, respectively. The diagonal eigenvalue matrix

is KN
rs ¼ diagðk1; k2; . . . ; kP Þ and thus AN

pq ¼ RN
pr � KN

rs � LN
sq. The matrix absolute value operator is defined as
jAN
pqj ¼ RN

pr � jKN
rsj � LN

sq; ð30Þ
with jKN
rsj ¼ diagðjk1j; jk2j; . . . ; jkP jÞ. We use the exact Riemann solver as numerical flux between two elements

T(m) and T ðkjÞ:
F h
pðw�q ;wþq Þ~n ¼

1

2
½ðANj

pq þ jANj
pq jÞw�q þ ðANj

pq � jANj
pq jÞwþq �; ð31Þ
where w�q ¼ ŵðmÞql WðmÞl and wþq ¼ ŵðkjÞ
ql WðkjÞ

l are the boundary extrapolated values of the reconstructed numerical
solution wh from element (m) and the jth side neighbor (kj), respectively, since both elements adjacent to a
boundary contribute to the numerical flux. The superscript Nj indicates that for each face of the element
the Jacobian matrix in normal direction has to be evaluated according to the corresponding normal vector
of the face. For rotationally invariant systems, special simplifications can be applied, see [11]. For non-con-
servative linear systems with piecewise constant varying coefficients, the same flux formulation is valid, with
the only modification that the flux has to be evaluated in each element with the corresponding coefficient ma-
trix ANj

pq ¼ ANj
pq ðT ðmÞÞ as function of the element T(m). Inserting (31) into (28) and splitting the boundary integral

into the contributions of each face 1 6 j 6 NE of the element T(m), we obtain
o

ot
ûðmÞp

Z
T ðmÞ

dV þ
XNE

j¼1

1

2
ðANj

pq þ jANj
pq jÞŵ

ðmÞ
ql

Z
ðoT ðmÞÞj

WðmÞl dS þ
XNE

j¼1

1

2
ðANj

pq � jANj
pq jÞŵ

ðkjÞ
ql

Z
ðoT ðmÞÞj

WðkjÞ
l dS ¼ 0:

ð32Þ

Eq. (32) is written in the physical x–y–z system, but if we transform each physical element T(m) to a canon-

ical reference element TE in a n–g–f reference system (see Fig. 1), the method can be implemented much more
efficiently since all integrals can be precomputed beforehand in the reference system.

After integration in the reference system, the semi-discrete formulation in 2D and 3D then reads as
o

ot
�uðmÞp jT ðmÞj þ

XNE

j¼1

1

2
ðANj

pq þ jANj
pq jÞjSjjF �;jl ŵðmÞql þ

XNE

j¼1

1

2
ðAN j

pq � jANj
pq jÞjSjjF þ;i;hl ŵðkjÞ

ql ¼ 0; ð33Þ
where jSjj denotes the surface of face j in 3D and the edge length of edge j in 2D. In (33) we use flux matrices
acting on the degrees of freedom of the reconstructed polynomials similar to the flux matrices for ADER-DG
schemes introduced in [11,14,13], which act on the degrees of freedom of the DG basis polynomials. The flux
matrices can be calculated analytically once on the reference element and then be stored. In the following, we
give the details of calculating those flux matrices on triangles and tetrahedrons in two and three space dimen-
sions. First, we define the local faces with their local vertex ordering according to Table 1, where the vertex



Table 1
Face definition on triangles and tetrahedrons

Triangles (2D) Tetrahedrons (3D)

Face Points Face Points

1 1 2 1 1 3 2
2 2 3 2 1 2 4
3 3 1 3 1 4 3

4 2 3 4
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numbering is strictly counter-clockwise in 2D as well as in 3D. Then, the vector of volume coordinates ~n is
given on the faces via mapping functions from the face parameters v and s, see Tables 2 and 3. Last but
not least, for flux computation over the face, we have to integrate along the face inside the element as well
as in the neighbor. This is done consistently by the transformation from the face parameters v and s inside
the element to the corresponding face parameters ~v and ~s in the neighbor face. Whereas in 2D this transfor-
mation is always ~v ¼ 1� v, in 3D the transformation depends on the orientation of the neighbor face respect
to the local face of the considered element, since via rotation of the triangular faces there may be three possible
orientations. The corresponding mappings are given in Table 4.

In two space dimensions, all possible flux matrices are
Table
2D vo

j

n(j)(v)
g(j)(v)

Table
3D vo

j

n(j)(v,s
g(j)(v,s
f(j)(v,s

Table
Transf
accord

h

~vðhÞðv;
~sðhÞðv;
F �;jl ¼
Z

oðT EÞj
Wlð~nðjÞðvÞÞdv; 81 6 j 6 3; ð34Þ

F þ;i;hl ¼
Z

oðT EÞj
Wlð~nðiÞð1� vÞÞdv; 81 6 i 6 3: ð35Þ
Index h is not used in 2D. In three dimensions, all possible flux matrices are
F �;jl ¼
Z

oðT EÞj
Wlð~nðjÞðv; sÞÞdvds; 81 6 j 6 4; ð36Þ

F þ;i;hl ¼
Z

oðT EÞj
Wlð~nðiÞð~vðhÞ;~sðhÞÞÞdvds; 81 6 i 6 4; 81 6 h 6 3: ð37Þ
2
lume coordinates ~nðjÞ in function of the edge parameter v

1 2 3

v 1 � v 0
0 v 1 � v

3
lume coordinates ~nðjÞ in function of the face parameters v and s

1 2 3 4

) s v 0 1 � v � s
) v 0 s v
) 0 s v s

4
ormation of the face parameters v and s of the tetrahedron’s face to the face parameters ~v and ~s in the neighbor tetrahedron
ing to the three possible orientations (h) of the neighbor face

1 2 3

sÞ s 1 � v � s v
sÞ v s 1 � v � s
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The left state flux matrix (superscript ‘�’) F �;jl accounts for the contribution of the element (m) itself to the
fluxes over face j and the right state flux matrix (superscript ‘+’) F þ;i;hl accounts for the contribution of the
element’s direct side neighbors (kj) to the fluxes over the face j. Index 1 6 i 6 NE indicates the local number
of the common face as it is seen from neighbor (kj) and depends on the mesh generator. For tetrahedrons,
index 1 6 h 6 3 indicates the orientation of the nodes in the local face of neighbor (kj) which lies on the local
vertex 1 on the edge j in tetrahedron number (m) and depends also on the mesh generator. On a given tetra-
hedral mesh, where indices i and h are known, only four of the 12 possible matrices F þ;i;hl are used per element.

If we integrate the semi-discrete Eq. (33) in time with a Runge–Kutta method, we obtain a quadrature-free
Runge–Kutta finite volume scheme. This would in fact be a similar approach for finite volume schemes as the
one developed by Atkins and Shu in [2] for discontinuous Galerkin finite elements. However, in this article we
do not use the Runge–Kutta method for time-integration, but we follow the ADER approach of Toro et al. as
presented in the following section.

3.1.1. The fully discrete formulation of the ADER-FV scheme

Since the efficiency of Runge–Kutta time discretization schemes drastically decreases if the order of accu-
racy becomes greater than four, due to the so-called Butcher barriers [6], which cause the number of interme-
diate RK stages to become larger than the formal order of accuracy, we apply the ADER approach of Toro
et al. to the semi-discrete form of the scheme (33) in order to achieve an arbitrarily accurate time
discretization.

The main ingredients of the ADER approach are a Taylor expansion in time, the solution of generalized
Riemann problems (GRP) to approximate the space derivatives at the interface and the Cauchy–Kovalewski
procedure for replacing the time derivatives in the Taylor series by space derivatives. This is described in
more detail in [11,15,44,41,45] for the nonlinear case. In this section we show how the ADER approach
can be used for high order time-integration of the finite volume method on unstructured grids, called
ADER-FV method in the following, for general linear hyperbolic systems. For linear systems, a particular
simplification can be introduced: time-integration and flux computation can be exchanged, i.e. instead of
solving the Riemann problems for all spatial derivatives on the interface and doing then the Cauchy–Kova-
lewski procedure with the obtained derivatives, we can integrate the reconstructed solution in time separately
in each element using the Cauchy–Kovalewski procedure on the reconstructed solution and then plug the
time-integrated values on the boundaries into the numerical flux function, which then takes correctly into
account the discontinuity at the interface. We emphasize that the pure application of the Cauchy–Kovalew-
ski procedure requires the solution to be analytic, whereas the ADER approach uses the solution of general-
ized Riemann problems with piecewise polynomial initial data. This supposes only that the solution is
piecewise analytic on both side of the element interfaces. Note that the GRPs are always solved along the
face-normal direction.

For the development of ADER-FV schemes, we first need a general formula for the Cauchy–Kovalewski
procedure in order to replace the kth time derivative by pure space derivatives. Since all our basis functions are
given in the n–g–f system, we need a Cauchy–Kovalewski procedure, which makes use of the spatial deriva-
tives with respect to n, g and f. Therefore, we rewrite our original PDE (26) with the use of (6). With the def-
initions (38)–(40),
A�pq ¼ Apqnx þ Bpqny þ Cpqnz; ð38Þ
B�pq ¼ Apqgx þ Bpqgy þ Cpqgz; ð39Þ
C�pq ¼ Apqfx þ Bpqfy þ Cpqfz; ð40Þ
we finally obtain
oup

ot
þ A�pq

ouq

on
þ B�pq

ouq

og
þ C�pq

ouq

of
¼ 0: ð41Þ
The kth time derivative as a function of pure space derivatives in the n–g–f reference system is the result of the
Cauchy–Kovalewski procedure applied to (41) and is given by
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o
kup

otk
¼ ð�1Þk A�pq

o

on
þ B�pq

o

og
þ C�pq

o

of

� �k

uq: ð42Þ
This can easily be proven by complete induction. It is a key point to use the Cauchy–Kovalewski procedure
in the form (42) since it allows us to pre-calculate many matrices beforehand, as we will see in the following.

We expand the reconstructed solution of (26) in a Taylor series in time about the current time level tn up to
degree M,
wpðn; g; f; tÞ ¼
XM

k¼0

ðt � tnÞk

k!

o
k

otk
wpðn; g; f; tnÞ; ð43Þ
and replace time derivatives by space derivatives, using Eq. (42)
wpðn; g; f; tÞ ¼
XM

k¼0

ðt � tnÞk

k!
ð�1Þk A�pq

o

on
þ B�pq

o

og
þ C�pq

o

of

� �k

wqðn; g; f; tnÞ: ð44Þ
We now introduce the approximation (3) and obtain
wpðn; g; f; tÞ ¼
XM

k¼0

ðt � tnÞk

k!
ð�1Þk A�pq

o

on
þ B�pq

o

og
þ C�pq

o

of

� �k

Wl
~n
� �

ŵqlðtnÞ: ð45Þ
This approximation can now be projected onto the reconstruction basis functions Wk in order to get an
approximation of the evolution of the reconstructed degrees of freedom during one time step from time level
tn to time level tn+1. We obtain
ŵplðtÞ ¼
Wn;

PM
k¼0

ðt�tnÞk
k!
ð�1Þk A�pq

o
onþ B�pq

o
ogþ C�pq

o
of

� �k
Wm

� �
Wn;Wlh i ŵqmðtnÞ; ð46Þ
where ÆÆ, Ææ denotes the inner product over the reference element TE and the division by ÆWn,Wlæ denotes the
multiplication with the inverse of the mass matrix. This reduces indeed to division by its diagonal entries since
the mass matrix is diagonal due to the supposed orthogonality of the basis functions. Eq. (46) can be inte-
grated analytically in time from the current time level tn to the next time level tn+1 = tn + Dt. We obtain
Z tnþDt

tn
ŵplðtÞdt ¼

Wn;
PM

k¼0
Dtðkþ1Þ

ðkþ1Þ! ð�1Þk A�pq
o
onþ B�pq

o
ogþ C�pq

o
of

� �k
Wm

� �
hWn;Wli

ŵqmðtnÞ: ð47Þ
With the definition
IplqmðDtÞ ¼
Wn;

PM
k¼0

Dtðkþ1Þ

ðkþ1Þ! ð�1Þk A�pq
o
onþ B�pq

o
ogþ C�pq

o
of

� �k
Wm

� �
hWn;Wli

: ð48Þ
Eq. (47) becomes simply
Z tnþDt

tn
ŵplðtÞdt ¼ IplqmðDtÞŵqmðtnÞ: ð49Þ
For efficient algorithms to do the Cauchy–Kovalewski procedure, we refer to [11,26,12]. We finally obtain
the fully discrete ADER-FV scheme by integration of (33) in time, where the superscripts n and n + 1 denote
the current and the successive time level
½ð�uðmÞp Þ
nþ1 � ð�uðmÞp Þ

n�jT ðmÞj þ 1

2

XNE

j¼1

ðANj
pq þ jANj

pq jÞjSjjF �;jl � IqlrmðDtÞðŵðmÞrm Þ
n

þ 1

2

XNE

j¼1

ðANj
pq � jANj

pq jÞjSjjF þ;i;hl � IqlrmðDtÞðŵðkjÞ
rm Þ

n ¼ 0: ð50Þ
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From the structure of Eq. (50) we see that the space–time-integrated values on the boundaries enter the
exact Riemann solver in order to give the space–time integral of the solution of the GRP at the interface.
We emphasize that this can only be done for linear systems.

The reconstructed degrees of freedom ðŵðmÞrm Þ
n at time level tn are obtained for each element at the beginning

of a time step using the reconstruction operator described in Section 2. On rectangular quadrilaterals and
hexahedra, the scheme takes the same form. The proposed finite volume scheme is quadrature-free since no
Gaussian integration is used in space and time. It performs high order time-integration from tn to tn+1 in
one single step. It thus needs the same memory as a first order explicit Euler time-stepping scheme. Please note
that in order to perform convergence studies with analytical reference data using high order accurate finite
volume schemes, the initial condition at t0 must be projected onto the cell average via L2 projection using high
order Gaussian quadrature rules, otherwise at most second order can be achieved due to insufficient accuracy
of the projection of the initial condition.

4. Numerical convergence results

In order to check the convergence of the proposed arbitrary high order finite volume scheme, we solve the
linearized Euler equations in the 2D domain X2D = [�50;50] · [�50;50] with four periodic boundary condi-
tions and in the 3D domain X3D = [�50;50] · [�50;50] · [�50;50] with six periodic boundary conditions. The
Jacobians of the linearized Euler equations are
Apq ¼

u0 q0 0 0 0

0 u0 0 0 1
q0

0 0 u0 0 0

0 0 0 u0 0

0 cp0 0 0 u0

0BBBBBB@

1CCCCCCA; Bpq ¼

v0 0 q0 0 0

0 v0 0 0 0

0 0 v0 0 1
q0

0 0 0 v0 0

0 0 cp0 0 v0

0BBBBBB@

1CCCCCCA; Cpq ¼

w0 0 0 q0 0

0 w0 0 0 0

0 0 w0 0 0

0 0 0 w0
1
q0

0 0 0 cp0 w0

0BBBBBB@

1CCCCCCA:
ð51Þ
The state vector contains the five fluctuation variables for density, velocity and pressure, i.e.
up = (q,u,v,w,p)T. The initial condition is given as
upðx; y; z; 0Þ ¼ sinð~k~xÞ 0 0 0 0
	 
T

; ð52Þ
with the wave-number vector ~k ¼ 2p
100
; 2p

100
; 2p

100

	 
T
in three space dimensions. In two space dimensions, the last

entry of ~k can be dropped. We set c = 1.4, q0 = 1, u0 = v0 = w0 = 1 and p0 ¼ 1
c. After one advection period

(time t = 100), the exact solution is given by the initial condition. We now perform two different types of con-
vergence studies using either only linear reconstruction based merely on the central stencil or using the non-
linear WENO reconstruction. The meshes used are a sequence of very irregular triangular meshes in two
dimensions, see Fig. 4 (top), obtained by successive red-refinement [28,21,22] and a sequence of regular tetra-
hedral grids, see Fig. 4 (bottom).

For measuring the error between the numerical solution of the first variable and the exact solution ue of the
first variable of the system, we first apply the reconstruction operator in order to get wh from uh and then we
use the continuous Lp-norms
kwh � uekLpðXÞ ¼
Z

X
jwh � uejp dV

� �1
p

; ð53Þ
in which the integration has been approximated using Gaussian integration formulae with twice the order of
accuracy of the numerical scheme. The L1 norm has been approximated by taking the maximum error arising
in any of the Gaussian integration points.

Tables 5–8 contain in the first row the mesh spacing h, which is taken as the maximum diameter of the outer
circle and outer sphere of the triangles and the tetrahedrons, respectively. The next three rows contain the
error measured in L1, L1 and L2 norm according to (53), followed by three columns giving the measured order
of accuracy between the respective grid and the previous grid. The last row gives the CPU time needed by the
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Fig. 4. Sequences of red-refined irregular meshes used for the two-dimensional convergence studies (top), and of regular grids used for the
three-dimensional convergence studies (bottom).
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serial code on a 2 · 3, 6 GHz Intel Dual Xeon workstation with 4 GB of RAM. A graphical illustration of the
L1 in terms of reciprocal mesh spacing 1/h and CPU time is given in Fig. 5. We see that in almost all cases the
designed order of accuracy has been reached very well, for the linear schemes as well as for the nonlinear
WENO schemes. Having a closer look at the CPU times, which were all measured on the same machine under
the same conditions, we find a remarkable result: the nonlinear WENO reconstruction increases the total CPU
time of the scheme at most by a factor of two compared to the linear reconstruction based on the central sten-
cil, although for WENO we have to do reconstruction on 7 and 9 stencils in 2D and 3D, respectively. This is a
strong indication that in general our reconstruction procedure is computationally quite efficient and that the
overhead associated with the computation of the oscillation indicators and the nonlinear weights is quite
small. Due to the quadrature-free high order accurate flux calculation in time via the ADER approach, our
proposed finite volume scheme is a one-step scheme that does the WENO reconstruction only once per time
step, which is a further benefit with respect to computational efficiency. Furthermore, we can deduce from
Fig. 5 that activating the WENO procedure does not significantly decrease accuracy in comparison to the lin-
ear reconstruction based on the central stencil.

5. Numerical experiments showing the non-oscillatory properties

5.1. Sensitivity study with respect to the linear weight of the central stencil

WENO schemes have become very popular since they provide essentially non-oscillatory solutions, without
having to adjust parameters. Of course, there are the parameters � and r, and in our new formulation there
even is an additional third parameter k1. However, WENO schemes can be considered almost parameter-free,
since it has been shown in the research literature that the quality of the solution does not depend much on the



Table 5
Two-dimensional ADER finite volume schemes from second to seventh order in space and time using a linear reconstruction based only on
the central stencil

h L1 L1 L2 OL1 OL1 OL2 tCPU [s]

ADER-FV O2, (M = 1), 2D linear reconstruction
4.23 1.1317E�01 3.4281E+02 4.0616E+00 0.0 0.0 0.0 4.95
2.11 2.9798E�02 7.4694E+01 8.7893E�01 1.9 2.2 2.2 36.48
1.06 6.6298E�03 1.7565E+01 2.0248E�01 2.2 2.1 2.1 279.64
0.53 1.7215E�03 4.3423E+00 4.9498E�02 1.9 2.0 2.0 2184.70

ADER-FV O3, (M = 2), 2D linear reconstruction
4.23 5.1329E�02 2.2599E+02 2.5253E+00 0.0 0.0 0.0 6.69
2.11 8.0704E�03 3.2031E+01 3.5884E�01 2.7 2.8 2.8 50.75
1.06 1.0198E�03 4.2218E+00 4.7291E�02 3.0 2.9 2.9 394.70
0.53 1.2885E�04 5.4068E�01 6.0526E�03 3.0 3.0 3.0 3158.52

ADER-FV O4, (M = 3), 2D linear reconstruction
4.23 6.3933E�03 1.0848E+01 1.3583E�01 0.0 0.0 0.0 10.91
2.11 4.7926E�04 6.1602E�01 7.9070E�03 3.7 4.1 4.1 83.67
1.06 3.8082E�05 3.4599E�02 4.4612E�04 3.7 4.2 4.1 658.02
0.53 2.5182E�06 2.1368E�03 2.7043E�05 3.9 4.0 4.0 5263.42

ADER-FV O5, (M = 4), 2D linear reconstruction
4.23 2.0917E�03 6.9619E+00 7.8587E�02 0.0 0.0 0.0 19.84
2.11 1.1394E�04 2.8352E�01 3.2149E�03 4.2 4.6 4.6 155.83
1.06 3.6690E�06 1.0094E�02 1.1388E�04 5.0 4.8 4.8 1236.66
0.53 1.1807E�07 3.3622E�04 3.7828E�06 5.0 4.9 4.9 9957.83

ADER-FV O6, (M = 5), 2D linear reconstruction
8.46 1.4291E�02 3.3323E+01 3.9999E�01 0.0 0.0 0.0 5.23
4.23 4.5004E�04 6.7116E�01 8.8316E�03 5.0 5.6 5.5 41.17
2.11 7.6126E�06 1.2672E�02 1.5876E�04 5.9 5.7 5.8 325.58
1.06 1.4174E�07 2.2625E�04 2.7237E�06 5.7 5.8 5.9 2585.91

ADER-FV O7, (M = 6), 2D linear reconstruction
8.46 4.8471E�03 1.5521E+01 1.7701E�01 0.0 0.0 0.0 9.48
4.23 8.0981E�05 2.1353E�01 2.4725E�03 5.9 6.2 6.2 73.84
2.11 1.7789E�06 2.8589E�03 3.3622E�05 5.5 6.2 6.2 590.53
1.06 1.6302E�08 2.9101E�05 3.4093E�07 6.8 6.6 6.6 4686.48
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choice of the parameters r and �, see [25,23,27,3]. In our new approach, we added a third parameter k1, there-
fore we first perform a sensitivity analysis of the solution with respect to the linear weight on the central stencil
k1. We compute the advection of a slotted cylinder solving the linearized Euler equations (c = 1.4, q0 = 1,
p0 ¼ 1

c) in a two-dimensional computational domain X = [�50;50] · [�50;50] with four periodic boundary

conditions along the diagonal with speeds u0 = v0 = 1 up to time t = 25 using a fourth order WENO recon-
struction as described in Section 2.3. The parameter k1 is varied between 102 and 105. The results are presented
in Figs. 6 and 7. For comparison, the initial condition as well as the results obtained with a linear reconstruc-
tion based only on the central stencil are shown. Our computational mesh is the same as used for the two-
dimensional convergence studies, see Fig. 4 (top), with five successive red-refinements [28,21,22]. The initial
condition is zero everywhere except for the density perturbation (i.e. the first component of the system of lin-
earized Euler equations) which is a slotted cylinder with center (�25,�25), radius R = 15, amplitude 4, slot
width 6 and slot length 22, similar to the one proposed by Zalesak [48]. We can see that the solution does
not depend much on the choice of k1. Despite of the extremely large linear weight on the central stencil in
the last case (k1 = 105), the solution remains essentially non-oscillatory. This can be explained by the fact that
even a very large linear weight of 105 is very small compared to the huge nonlinear weights ~x generated for
smooth one-sided stencils where the oscillation indicators are almost zero. In smooth regions of the compu-



Table 6
Two-dimensional ADER finite volume schemes from second to seventh order in space and time using the new nonlinear WENO
reconstruction based on the central stencil, three primary sector stencils and three reverse sector stencils

h L1 L1 L2 OL1 OL1 OL2 tCPU [s]

ADER-FV O2, (M = 1), 2D WENO reconstruction
4.23 4.6849E�01 2.1506E+03 2.5602E+01 0.0 0.0 0.0 10.92
2.11 1.9165E�01 8.2690E+02 9.3984E+00 1.3 1.4 1.4 84.16
1.06 6.3768E�02 1.8430E+02 2.4600E+00 1.6 2.2 1.9 638.33
0.53 1.0877E�02 1.8786E+01 2.9573E�01 2.6 3.3 3.1 5129.17

ADER-FV O3, (M = 2), 2D WENO reconstruction
4.23 4.7998E�02 2.1560E+02 2.3864E+00 0.0 0.0 0.0 14.61
2.11 7.5157E�03 2.9427E+01 3.2864E�01 2.7 2.9 2.9 112.95
1.06 9.2423E�04 3.7963E+00 4.2512E�02 3.0 3.0 3.0 896.02
0.53 1.1617E�04 4.8333E�01 5.4103E�03 3.0 3.0 3.0 7158.27

ADER-FV O4, (M = 3), 2D WENO reconstruction
4.23 6.2878E�03 1.0512E+01 1.3217E�01 0.0 0.0 0.0 21.25
2.11 4.8132E�04 5.9663E�01 7.6874E�03 3.7 4.1 4.1 166.80
1.06 3.7761E�05 3.3488E�02 4.3342E�04 3.7 4.2 4.1 1327.34
0.53 2.4868E�06 2.0627E�03 2.6270E�05 3.9 4.0 4.0 10535.64

ADER-FV O5, (M = 4), 2D WENO reconstruction
8.46 3.5396E�02 1.3243E+02 1.4796E+00 0.0 0.0 0.0 4.81
4.23 2.2376E�03 7.5768E+00 8.4448E�02 4.0 4.1 4.1 39.59
2.11 1.2066E�04 3.3915E�01 3.8338E�03 4.2 4.5 4.5 311.52
1.06 4.1017E�06 1.2141E�02 1.3691E�04 4.9 4.8 4.8 2477.45

ADER-FV O6, (M = 5), 2D WENO reconstruction
8.46 1.3100E�02 3.2971E+01 3.9011E�01 0.0 0.0 0.0 8.17
4.23 5.1919E�04 9.8502E�01 1.2550E�02 4.7 5.1 5.0 70.25
2.11 9.2713E�06 2.0193E�02 2.4820E�04 5.8 5.6 5.7 558.78
1.06 2.4935E�07 3.5281E�04 4.2227E�06 5.2 5.8 5.9 4424.42

ADER-FV O7, (M = 6), 2D WENO reconstruction
8.46 4.7807E�03 1.5624E+01 1.7762E�01 0.0 0.0 0.0 12.81
4.23 1.1429E�04 2.2782E�01 2.6894E�03 5.4 6.1 6.0 120.75
2.11 2.8930E�06 1.6990E�03 2.2838E�05 5.3 7.1 6.9 983.64
1.06 4.2599E�08 1.1918E�05 1.6911E�07 6.1 7.2 7.1 7863.11
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tational domain, where the oscillation indicators of all stencils take similar values, the central stencil is
weighted so heavily that our WENO scheme automatically switches to central reconstruction.

In order to support this conjecture, we next perform a parameter study of the influence of the linear weight
k1 on the central stencil for a smooth problem. We suppose that the error norms do not depend much on the
choice of k1, provided it is chosen large enough so that in smooth regions the central stencil will always be the
preferred one. The calculated test-problem is the same as used for the two-dimensional convergence studies
presented in Section 4. We calculate the problem on the irregular triangular mesh (see Fig. 4 top) with
h = 2.11 using a fourth order WENO reconstruction and varying k1 from 102 to 105. The results of the error
norms are given in Table 9 and show that the error norms are not very sensitive to the choice of this parameter
in the studied range. A larger value of k1 leads to results that are closer to the ones of a linear reconstruction
based only on the central stencil, see Table 5. We note that for all the other calculations done in this article, we
set k1 = 103.

5.2. Two-dimensional test case

To validate our numerical scheme, we solve the kinematic frontogenesis problem arising in meteorology, as
described in [24,9,45], in two space dimensions. It is of particular interest since it allows to check whether a



Table 7
Three-dimensional ADER finite volume schemes from second to sixth order in space and time using a linear reconstruction based only on
the central stencil

h L1 L1 L2 OL1 OL1 OL2 tCPU [s]

ADER-FV O2, (M = 1), 3D linear reconstruction
8.67 3.9310E�01 2.0287E+05 2.2694E+02 0.0 0.0 0.0 12.56
4.33 9.7328E�02 5.2193E+04 5.8266E+01 2.0 2.0 2.0 193.84
3.47 6.1320E�02 3.3556E+04 3.7281E+01 2.1 2.0 2.0 474.50
2.17 2.3352E�02 1.3070E+04 1.4545E+01 2.1 2.0 2.0 3029.77

ADER-FV O3, (M = 2), 3D linear reconstruction
8.67 2.8633E�01 1.6749E+05 1.8619E+02 0.0 0.0 0.0 24.25
4.33 4.2756E�02 2.3741E+04 2.6338E+01 2.7 2.8 2.8 380.05
3.47 2.1244E�02 1.2234E+04 1.3567E+01 3.1 3.0 3.0 922.58
2.89 1.2676E�02 7.0887E+03 7.8645E+00 2.8 3.0 3.0 1861.53

ADER-FV O4, (M = 3), 3D linear reconstruction
8.67 6.8594E�02 3.8995E+04 4.2856E+01 0.0 0.0 0.0 60.16
5.78 1.3391E�02 7.6728E+03 8.6408E+00 4.0 4.0 3.9 302.27
4.33 4.3484E�03 2.4809E+03 2.7468E+00 3.9 3.9 4.0 951.73
3.47 1.8250E�03 1.0099E+03 1.1272E+00 3.9 4.0 4.0 2291.09

ADER-FV O5, (M = 4), 3D linear reconstruction
8.67 5.4065E�02 3.0689E+04 3.4014E+01 0.0 0.0 0.0 174.86
5.78 7.8493E�03 4.2487E+03 4.7029E+00 4.8 4.9 4.9 861.44
4.33 1.7343E�03 1.0173E+03 1.1257E+00 5.2 5.0 5.0 2723.48
3.47 5.9937E�04 3.3390E+02 3.6960E�01 4.8 5.0 5.0 6572.97

ADER-FV O6, (M = 5), 3D linear reconstruction
17.33 3.3401E�01 1.7333E+05 1.9119E+02 0.0 0.0 0.0 29.44
8.67 5.2120E�03 2.1788E+03 2.4977E+00 6.0 6.3 6.3 468.97
5.78 4.5961E�04 1.6021E+02 1.8230E�01 6.0 6.4 6.5 2368.50
4.33 8.0776E�05 2.6009E+01 2.9740E�02 6.0 6.3 6.3 7449.00
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scheme is able to treat discontinuities that move with respect to each other. We solve the locally linearized
Euler equations, where the background values appearing in the Jacobian matrices (51) depend on space. In
particular, we set q0 = p0 = 1, and the background velocity field in the x–y plane is given as follows:
u0 ¼ �yxðrÞ; v0 ¼ xxðrÞ; xðrÞ ¼ 1

r
U T ðrÞ; r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
;

UT ðrÞ ¼ U max sech2ðrÞ tanhðrÞ; Umax ¼ 2:5980762:
ð54Þ
The discontinuous initial condition depends only on y and reads as
upðx; y; z; 0Þ ¼ q0ðyÞ 0 0 0 0ð ÞT; ð55Þ
with
q0ðyÞ ¼
�1 if y < 0;

1 if y P 0;

�
ð56Þ
The exact solution is then given according to [9,45] as follows:
upðx; y; z; tÞ ¼ q0ðy cosðxðrÞtÞ � x sinðxðrÞtÞÞ 0 0 0 0ð ÞT: ð57Þ
We note that with growing time t the solution will develop smaller and smaller scales that may become too
small to be resolved on a fixed computational mesh. We solve the problem on a computational domain X
being a circle with radius R = 5 and compute the solution up to t = 6 using three different triangulations with
characteristic mesh lengths h = 0.04, h = 0.02 and h = 0.01 respectively. The coarsest triangulation is depicted
in Fig. 8. A 3D plot of the numerical solution obtained on the finest mesh using a sixth order ADER-FV



Table 8
Three-dimensional ADER finite volume schemes from second to sixth order in space and time using the new nonlinear WENO
reconstruction based on the central stencil, four primary sector stencils and four reverse sector stencils

h L1 L1 L2 OL1 OL1 OL2 tCPU [s]

ADER-FV O2, (M = 1), 3D WENO reconstruction
8.67 8.8754E�01 5.5942E+05 6.1425E+02 0.0 0.0 0.0 22.63
4.33 4.4800E�01 2.2221E+05 2.7028E+02 1.0 1.3 1.2 354.77
3.47 3.1743E�01 1.4416E+05 1.7769E+02 1.5 1.9 1.9 865.80
2.17 1.5390E�01 8.3702E+04 9.4204E+01 1.5 1.2 1.4 5771.13

ADER-FV O3, (M = 2), 3D WENO reconstruction
8.67 5.8007E�01 1.9999E+05 2.3457E+02 0.0 0.0 0.0 45.95
4.33 4.1463E�02 2.3134E+04 2.5158E+01 3.8 3.1 3.2 729.14
3.47 2.0741E�02 1.2019E+04 1.3129E+01 3.1 2.9 2.9 1778.48
2.89 1.1997E�02 6.9421E+03 7.6211E+00 3.0 3.0 3.0 3676.81

ADER-FV O4, (M = 3), 3D WENO reconstruction
8.67 1.5419E�01 5.9099E+04 6.7128E+01 0.0 0.0 0.0 119.58
5.78 2.5149E�02 7.4936E+03 9.3283E+00 4.5 5.1 4.9 604.97
4.33 4.7691E�03 2.4376E+03 2.7306E+00 5.8 3.9 4.3 1904.85
3.47 1.9369E�03 9.9601E+02 1.1067E+00 4.0 4.0 4.0 4585.50

ADER-FV O5, (M = 4), 3D WENO reconstruction
8.67 7.2843E�02 4.1809E+04 4.6713E+01 0.0 0.0 0.0 286.14
5.78 8.4212E�03 4.2050E+03 4.7182E+00 5.3 5.7 5.7 1426.48
4.33 1.8673E�03 1.0474E+03 1.1463E+00 5.2 4.8 4.9 4510.00
3.47 6.1997E�04 3.5708E+02 3.9116E�01 4.9 4.8 4.8 10885.00

ADER-FV O6, (M = 5), 3D WENO reconstruction
17.33 3.3401E�01 1.7333E+05 1.9119E+02 0.0 0.0 0.0 33.00
8.67 8.3475E�03 1.8396E+03 2.2675E+00 5.3 6.6 6.4 525.72
5.78 5.0654E�04 1.7860E+02 2.1058E�01 6.9 5.8 5.9 2655.13
4.33 1.4281E�04 5.5164E+01 6.4060E�02 4.4 4.1 4.1 8350.47
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scheme is shown in Fig. 9 for different output times. One can see the rolling of the initial discontinuity and the
development of finer and finer scales. The results are very sharp and clearly show the essentially non-oscilla-
tory behavior of the method. To assess this property in more detail, we show one-dimensional cuts through the
solution at time t = 6.0 along the y-axis (x = 0) in Fig. 10 for ADER-FV schemes from second to sixth order
of accuracy in space and time. The cuts are taken evaluating the reconstructed solution wh point-wise on a
fixed set of 200 equidistant sampling points in the interval y 2 [�3;3]. One can make two main observations:
First, the higher order schemes in general show a sharper resolution even of the discontinuities than the lower
order schemes. Second, as expected for WENO methods, very high order schemes tend to produce oscillations
on coarse grids since they need larger stencils which may not fit any more in between the discontinuities. We
note that in our approach we do not switch to lower order stencils if no smooth high order stencils can be
found but we rather rely on mesh refinement. Those oscillations can be clearly seen for example in Fig. 10
(top) for the third order (M = 2) and the sixth order (M = 5) method. However, after grid refinement the oscil-
lations disappear completely, see Fig. 10 (middle) and (bottom). The numerical results show furthermore that
the second-order scheme produces similar results on the finest grid (h = 0.01) compared with the sixth order
scheme on the intermediate grid (h = 0.02).

5.3. Three-dimensional test cases

To our knowledge, there has been no three-dimensional unstructured WENO scheme reported in the
research literature up to now. In this section we present the results obtained with a fourth order ADER-
FV scheme on unstructured three-dimensional tetrahedral meshes using the previously presented WENO
reconstruction.
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Fig. 5. Numerical convergence behavior of two-dimensional (top) and three-dimensional (bottom) ADER-FV schemes with linear and
nonlinear WENO reconstruction in terms of reciprocal mesh spacing 1/h and CPU time.
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5.3.1. 3D advection example

The first test case consists in the advection of a hollow sphere in a three-dimensional computational domain
X3D = [�50;50] · [�50;50] · [�50;50] with six periodic boundary conditions. We solve the linearized Euler



Fig. 6. Sensitivity study of the new WENO parameter k1 using fourth order schemes: (a) Initial condition, (b) ADER-FV O4 using linear
reconstruction, (c) ADER-FV O4 using WENO with k1 = 102, (d) ADER-FV O4 using WENO with k1 = 103, (e) ADER-FV O4 using
WENO with k1 = 104, (f) ADER-FV O4 using WENO with k1 = 105.
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Fig. 7. Sensitivity study of the new WENO parameter k1 using fourth order schemes: (a) Initial condition, (b) ADER-FV O4 using linear
reconstruction, (c) ADER-FV O4 using WENO with k1 = 102, (d) ADER-FV O4 using WENO with k1 = 103, (e) ADER-FV O4 using
WENO with k1 = 104, (f) ADER-FV O4 using WENO with k1 = 105.

Table 9
Sensitivity study with respect to the linear weight k1 on the central stencil using a two-dimensional fourth order ADER finite volume
scheme with WENO reconstruction. Grid spacing is h = 2.11

k1 L1 L1 L2

102 5.0012E�04 4.9330E�01 6.6470E�03
103 4.8132E�04 5.9663E�01 7.6874E�03
104 4.7947E�04 6.1402E�01 7.8842E�03
105 4.7928E�04 6.1582E�01 7.9047E�03
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equations with the same parameters as in the previous convergence and sensitivity studies, i.e. c = 1.4, q0 = 1,
p0 ¼ 1

c and u0 = v0 = w0 = 1. The discontinuous initial condition is given as a function of r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
:

upðx; y; z; 0Þ ¼ u1ðrÞ 0 0 0 0ð ÞT; ð58Þ



with
u1ðrÞ ¼
1 if Ri 6 r 6 Ra;

0 else;

�
ð59Þ
choosing for the inner radius Ri = 17 and for the outer radius Ra = 34. After t = 100 the exact solution is again
given by the initial condition. The problem is solved on an irregular unstructured mesh containing 191933 tet-
rahedrons, see Fig. 11, where the projection of the discontinuous initial condition is highlighted in dark gray.
To visualize the interior of the domain X as well as some part of the tetrahedrization, the sector where x > 0
and y > 0 and z > 0 is not plotted. We perform two computations of this test case, always using fourth order
ADER-FV schemes and the same numerical parameters, but once using only linear reconstruction based on
the central stencil and once the WENO reconstruction proposed in Section 2.3.

The results are plotted in Fig. 12, where we show a cut of the reconstructed initial condition as well as the
reconstructed solution after one advection period at t = 100 in the x–y plane. To facilitate visualization of the
inner discontinuity, the sector where x > 0 and y > 0 is not plotted. We clearly see the generation of heavy
oscillations with the linear reconstruction operator, especially in the reconstruction of the discontinuous initial
condition, whereas the WENO scheme is able to obtain a very good non-oscillatory solution. The total CPU
time for the calculation using the ADER-FV scheme with WENO reconstruction was only 50% larger than the
time needed by the ADER-FV scheme based on the linear reconstruction operator using only the central
stencil.

5.3.2. Robustness on highly stretched grids

The second three-dimensional test case is chosen in order to study the robustness of our method with
respect to highly stretched grids. There is a very well-known one-dimensional advection test case that is often
documented in the research literature on WENO schemes, see [3,25,43] to study the long-time evolution of the
numerical solution of the one-dimensional scalar advection equation. In this section, we basically compute the
same problem, but solve the linearized Euler equations on two highly distorted three-dimensional tetrahedral
grids. The background values in the Jacobian matrices are q0 = 1, u0 = 1, v0 = w0 = 0 and p0 = 1. The com-
putational domain is X3D(L) = [�1;1] · [�L;L] · [�L;L] and is in both cases meshed using a regular tetrahe-
dral mesh, see Fig. 4 (bottom) with 400 elements in x-direction and six elements in each y and z-direction. The
scaling parameter is L = 0.3 for the highly stretched mesh in y and z direction and L = 0.00075 for the highly
stretched mesh in x direction. The stretching ratio with respect to the corresponding axis direction is in both
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Fig. 10. Kinematic frontogenesis problem: Cut along the y-axis at time t = 6. ADER-FV schemes O2 (M = 1) up to O6 (M = 5).
Characteristic mesh lengths h = 0.04 (top), h = 0.02 (middle), h = 0.01 (bottom).
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cases 1:20. A representative tetrahedron in physical coordinates of both stretched grids can be seen in Fig. 13
(left) for L = 0.3 and in Fig. 13 (right) for L = 0.00075. The tetrahedrons on the left of Fig. 13 are very thin
plates whereas the tetrahedrons on the right of Fig. 13 are long needles. The advection in this test case is
always parallel to the x-axis and therefore with the thin plates and the needles we can check the robustness
of the method for advection occurring parallel and normal to the stretched direction, respectively.

The initial condition for the system is zero except of the first component (density fluctuation q) which is
given according to Jiang and Shu [25] as
nitial condition isu1(r) = 1 is highlighted in dark gray.718M. Dumbs
qðx; 0Þ ¼

1
6
½Gðx; z� dÞ þ Gðx; zþ dÞ þ 4Gðx; zÞ�; �0:8 6 x 6 �0:6;

1; �0:4 6 x 6 �0:2;

1� j10 x� 0:1ð Þj; 0:0 6 x 6 0:2;
1
6
½F ðx; a� dÞ þ F ðx; aþ dÞ þ 4F ðx; aÞ�; 0:4 6 x 6 0:6;

0; otherwise;

8>>>>>><>>>>>>: ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq

with Gðx; zÞ ¼ e�bðx�zÞ2 and F ðx; aÞ ¼ maxð1� a2ðx� aÞ2; 0Þ.

The constants are a = 0.5, z = �0.7, d = 0.005, a = 10 and b ¼ ln 2
36d2, see [25]. We impose six periodic bound-

ary conditions and compute the numerical solution up to time t = 20, which corresponds to ten periods of
advection. The results are depicted in Fig. 14 as 1D cuts through the reconstructed solution wh on 800 equi-
distant sample points along the x-axis (x 2 [�1;1]) for ADER-FV schemes from second to fourth order of
accuracy. We can clearly observe the improvement of the resolution of smooth features with increasing order
of accuracy as well as the essentially non-oscillatory behavior of the scheme, even on these highly stretched
er, M. Ka¨ser / Journal of Computational Physics 221 (2007) 693…723



Fig. 12. Results in the cutting plane z = 0 of the 3D test case using fourth order ADER-FV schemes: (a) Reconstructed initial condition
using linear reconstruction. (b) Reconstructed solution at t = 100 using linear reconstruction. (c) Reconstructed initial condition using
WENO reconstruction. (d) Reconstructed solution at t = 100 using WENO reconstruction.
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Fig. 13. Stretched tetrahedrons in physical coordinates for the thin plates with L = 0.3 (left) and the needles with L = 0.00075 (right). The
aspect ratio of the shortest and the longest edge is in both cases 1:20.
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grids. We emphasize that even in such stretched grids the reconstruction stencils will be mapped to regular
stencils in the reference coordinate system, in which the final reconstruction equations are written and solved.
Please note that such badly stretched tetrahedrons (usually called slivers) can actually appear in unstructured
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3D mesh generation, e.g. near corners of solid wall boundaries or at the intersection of differently meshed sub-
zones of the grid.

6. Summary and conclusions

In this article we presented a new reconstruction procedure of arbitrary accuracy for finite volume schemes
on unstructured meshes in two and three space dimensions. For the reconstruction we use hierarchical orthog-
onal basis functions of degree M, as frequently used in the discontinuous Galerkin finite element framework.
This leads to a scheme with an order of accuracy M + 1. The output of the reconstruction is an entire poly-
nomial, not a point-value on a specific location, which commonly is the case for several high order reconstruc-
tions [25,23,3]. The reconstruction basis is defined in a reference coordinate system and therefore our
reconstruction essentially relies on the transformation of the physical reconstruction stencils into this partic-
ular reference system. This takes out scaling effects that usually may lead to ill-conditioned reconstruction
matrices. It was shown that the computation of the reconstruction matrices can be done very generally using
basis functions. They can be easily pre-computed by Gaussian quadrature of the basis functions over the sten-
cil and can then be stored for each element. For robustness purposes, more elements than the minimum
needed for reconstruction of a polynomial of degree M are used, see also [4,30,27].

After the linear reconstruction had been developed, the step to a nonlinear weighted essentially non-oscil-
latory (WENO) reconstruction technique that provides an entire polynomial was done. For this purpose, our
proposed WENO scheme on unstructured grids uses a nonlinearly weighted sum of polynomials of degree M

in order to obtain finally a nonlinear WENO polynomial of equal degree M. The use of basis functions in a
reference element allows an efficient computation of the WENO oscillation indicators which become quadratic
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functionals of the reconstructed degrees of freedom. The oscillation indicator matrix Rlm appearing in these
functionals is universal and does neither depend on the problem, nor on the mesh. It depends only on the basis
functions, the order of accuracy and the number of space dimensions. The set of reconstruction stencils con-
tains one central stencil and a set of purely one-sided primary and reverse sector stencils, see [27]. The linear
weights on the one-sided stencils are chosen to be equal to one, and a much larger linear weight k1 (typically
103) is put on the central stencil which should be the preferred one in smooth regions. This choice for the linear
weights avoids the problems of negative linear weights documented previously in the literature on WENO
schemes for unstructured meshes [23,36]. The numerical results are quite insensitive with respect to the choice
of this new WENO parameter which has been confirmed by numerical experiments with smooth and discon-
tinuous solutions. The availability of the whole polynomial furthermore considerably reduces computational
cost in multiple space dimensions, especially if solution-dependent source terms have to be evaluated or if
derivatives of the reconstruction have to be computed. In fact, our numerical studies show that in combination
with the ADER approach (which essentially relies on derivative information for flux computation) the use of a
nonlinear WENO reconstruction instead of a linear reconstruction based on one single central stencil only
increases the computational effort by a factor which is not larger than two, see Tables 5–8. This is quite a
remarkable result since usually WENO schemes are considered to be very expensive.

However, we must underline the fact that due to this choice of the linear weights the overall accuracy
obtained by our WENO method can not be the optimal one any more with respect to a WENO scheme using
the same set of stencils and optimal linear weights. This is certainly a disadvantage, however we would like to
give three arguments to justify our choice: First, our choice of the linear weights simplifies implementation
considerably, especially on three-dimensional unstructured tetrahedral grids. The second and even more
important argument is the availability of the entire polynomials in the reference element and therefore also
of all space derivatives instead of mere point values. The reconstruction in the reference element allows the
efficient mesh-independent computation of the oscillation indicators according to (24) and makes furthermore
the use of the ADER approach very efficient. Third, an optimal WENO scheme can only be constructed for
point-wise reconstruction in the Gaussian integration points on the surfaces, which means that the whole non-
linear WENO reconstruction procedure has to be repeated in each quadrature point. For the moment, we do
not yet consider source terms, which would lead to volume integrals and therefore to a further increase in
Gaussian integration points. On a tetrahedron in 3D one would have to use e.g. at least seven quadrature
points on each triangular surface for a fifth order method (see [38, p. 315]), which makes a total of 28 quad-
rature points for all four sides and therefore would require 28 optimal WENO reconstructions. Using a third
order TVD Runge–Kutta time-stepping method in a method-of-lines (MOL) approach, as usual for standard
WENO schemes documented in the literature, one would need 84 optimal WENO reconstructions per element
and time step and achieves at the end, however, only a global order of accuracy of three due to the Runge–
Kutta time stepping. By contrast, with our ADER-FV approach one obtains full fifth order of accuracy in
space and time with only one reconstruction per element and time step where the reconstruction yields the
entire polynomial with all its derivatives. In our opinion, this last point is the most important advantage of
the chosen reconstruction strategy, even more important than the resulting non-negative weights.

The new WENO reconstruction algorithm has been used to construct arbitrary high order finite volume
schemes on unstructured meshes in two and three space dimensions using the ADER approach of Toro
et al. [42,40,41,35,34] for flux calculation. In this article we restricted us to the solution of linear hyperbolic
systems. Practical applications of the scheme may be acoustic, electro-magnetic or seismic wave propagation
in complex geometries. However, the same reconstruction technique can be also applied to construct arbitrary
high order accurate finite volume schemes for nonlinear hyperbolic systems, which will be subject to a further
publication. Another application of the proposed WENO reconstruction that produces entire polynomials
may be the use as limiters for discontinuous Galerkin schemes on unstructured meshes, as already proposed
by Qiu and Shu [33,31,32] for structured grids.
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